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The formulation, usage methodology and two validation examples are presented in
support of the enhancement of PAB3D’s time accurate capabilities. Two well known tem-
poral integration schemes been added to provide second-order time accuracy by employing
physical time sub-iteration and duel time sub-iteration. Comparisons with experimental
data indicate both methods can be very accurate, but more study is needed to rigorously
characterize the performance and accuracy of the schemes in PAB3D. Predictions of the
Strouhal number of the Von Kármán vortex street for sample validation cases of low
Reynolds number flow past a cylinder and high subsonic flow past a blunt flat plate, show
good agreement with experimental data.

Introduction

Investigations in the area of unsteady flow control
for propulsion applications have led to an increased
interest in upgrading PAB3D’s time accurate capa-
bilities. PAB3D is a structured, multiblock, parallel,
implicit, finite-volume solver, of the three-dimensional,
unsteady, Reynolds-averaged Navier-Stokes equations.
Advanced turbulence models are available and are
widely used in internal and external flow applications
by NASA and the US aerospace industry. In recog-
nition of the importance of the continued enhance-
ment of the PAB3D solver for use in industry and
government projects, NASA Langley Research Cen-
ter has advocated the long-term development of the
code. The present addition of improved algorithms for
second-order time accuracy, sub-iteration schemes and
unsteady jet boundary conditions provide key mod-
ernizing enhancements to the code. In this task, two
widely used time advancement schemes1–3 are imple-
mented in PAB3D and validated against experimental
data.4–6

Time Advancement Formulation

The flux vector form of the Navier-Stokes equations
may be written in indicial notation as

1
J

∂Q
∂t

= − ∂

∂ξj
[Ej − (Ev)j ] = R(Q) (1)

where Q is the flow vector, Ej and (Ev)j are the jth

inviscid and viscous flux vectors respectively and R is
the residual vector. The time dependent term may be
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discretized with backward differencing as

(1 + φ)(Qn+1 −Qn)− φ(Qn −Qn−1)
J∆t

= R(Qn+1)

(2)
and rearranging Eq. (2) gives

(1 + φ)
J∆t

(Qn+1 −Qn) = R(Qn+1) +
φ(Qn −Qn−1)

J∆t
(3)

where the superscripts indicate the time level, and
φ = 0 and φ = 1

2 result in a first or second-order time
accurate difference respectively. As a means of im-
proving time accuracy, two sub-iteration schemes are
implemented, duel or pseudo time stepping and phys-
ical time stepping. In duel time sub-iterations, the
time step is allowed to vary across all cells based on a
constant CFL. In physical time sub-iteration the time
step is constant for all cells. For the duel time scheme,
an additional pseudo time term is added to Eq. (2),

Qm+1 −Qm

J∆τ
+

(1 + φ)(Qm+1 −Qn)
J∆t

=

R(Qm+1) +
φ(Qn −Qn−1)

J∆t
(4)

and rearranging Eq. (4) gives
[

1
J∆τ

+
(1 + φ)
J∆t

]
(Qm+1 −Qm) = R(Qm+1)+

φ(Qn −Qn−1)
J∆t

− (1 + φ)(Qm −Qn)
J∆t

(5)

where m is the sub-iteration index and ∆τ represents
the pseudo time step. As m → ∞, the pseudo term
vanishes and with convergence Qm+1 → Qn+1. To
generalize the time accurate scheme for any of the im-
plicit formulations in PAB3D, R(Q) is linearized and
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the RHS is rewritten as,

RHS = R(Qm)+
φ(Qn −Qn−1)

J∆t
− (1 + φ)(Qm −Qn)

J∆t
(6)

Additionally, the time step in the implicit side is re-
placed by

1
J∆timp

=
[

1
J∆τ

+
(1 + φ)
J∆t

]
(7)

where the quantity ∆τ is set according to a constant
CFL number. The physical time sub-iteration scheme
is similar to the duel time stepping method with the
exception that the implicit time step term is now de-
fined as

1
J∆timp

=
[
(1 + φ)
J∆t

]
(8)

Usage

The interface to the new time accurate features re-
side on a new segment of the user.cont file, an exam-
ple and definitions are given as follows:

’Begin TimeStep Cont’
ir0 ratr ita cfltau ncycle
1 0.10 -2 5. 5

’End TimeStep Cont’

Variable Value Definition
ir0 0∗ Residual calculated from l2 norm

of Q over all cells
1 Residual calculated from l2 norm

of ρ over all cells
ratr 0.5∗ Limiter factor based on ρ per

time step and imposed on Q
ita 1∗ First-order time accuracy with

physical time sub-iteration
2 Second-order time accuracy with

physical time sub-iteration
-1 First-order time accuracy with

duel time sub-iteration
-2 Second-order time accuracy with

duel time sub-iteration
cfltau CFL number for duel time sub-

iteration
ncycle Number of time iterations

per physical time level, e.g.
ncycle=1 for no sub-iterations.
Typical value is 5, which gives 4
sub-iterations.

where (*) denotes the default value used when the
TimeStep segment is omitted. The constant global
time step is calculated from the CFL of the smallest
cell, provided by the dt input in the tpab3d.cont
file. Note, that dt < 0 indicates the CFL per grid cell
is constant for pseudo time stepping. To obtain the
actual time step used for time accurate calculations,
see the PAB.out file, for example:

Time Accurate Procedure
dtmin= 2.3720261E-08
dtmax= 4.9344753E-06
CFLM= 100.0000
time step in secs 2.3720261E-06
normalized time step 8.0963218E-04
Actual CFL = 100.0000

Results
Two geometries are examined to validate the time

accuracy of the code, a circular cylinder and a flat plate
with semicircular end caps. The flow about the cylin-
der is solved for low Reynolds number and low Mach.
The flow about the plate is solved with a moderate
Reynolds and high subsonic Mach. In both cases, the
vortex shedding reduced frequency is compared with
experimental results.

Circular Cylinder in Cross-flow

The frequency with which vortices are shed in a
Kármàn vortex street behind a circular cylinder has
been studied in numerous experiments,4–6 from which
an experimental range of dimensionless frequency or
Strouhal number, St, is tabulated and plotted along
with CFD results, see Table 1 and Figure 1. Strouhal
number is defined as

St =
nD

V
(9)

where n is the dimensional frequency, D is the cylinder
diameter and V is the free-stream velocity.

Table 1 Circular Cylinder: Strouhal number re-
sults

2nd-order 2nd-order
ReD duel physical Experiment4–6

100 0.158 0.154 0.160-0.170
200 0.182 0.196 0.180-0.200

1000 0.198 0.225 0.195-0.215
10000 0.200 0.240 0.190-0.205

The flow field around the cylinder is simulated by
solving the unsteady, compressible, laminar Navier-
Stokes equations using an implicit, up-wind, flux-
difference splitting, finite volume scheme. Turbulence
is not modeled, due to the uncertain time accuracy of
the models and the fact that the Reynolds numbers
are well below the Recrit ≈ 30, 000.6 The 2D grid con-
sisted of 34,832 cells and 6 blocks, and extended 20
diameters into the far-field, see Figure 2. The same
grid was used for all runs, which gave a maximum y+

range of approximately 0.04 to 17. The diameter of the
cylinder, D was at Re = 200 was 0.235 mm and the
Mach number for all cylinder cases was M = 0.3. The
shedding frequencies are observed from the pressure
contribution of lift, which is obtained via the internal
Post stream thrust function integrated over the solid
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Fig. 1 Circular Cylinder: Strouhal number CFD
results compared with experimental range.4–6

surface, which is equivalent to integrating surface pres-
sure. Sample contour plots at of Mach number and
vorticity magnitude at Re = 200 illustrate the vortex
street formation, see Figures 3 and 4.

The solution strategy for this case is to first run
at coarse grid level and large time step to trigger the
asymmetric vortex shedding instability, then refine the
grid and time step for accuracy. Sample plots for Re =
200 of CL history for four time integration schemes are
shown in Figures 5- 8, where

CL =
L

1
2ρV 2S

(10)

and S is area of the cylinder section solved. In each
plot the onset on asymmetric vortex shedding is seen
to occur just after 10−4 seconds and the switch to fine
grid is seen to coincide with a increase in amplitude
of CL at 4 × 10−4 seconds. Confidence in the final
solution is enhanced by the fact that the fine grid
amplitudes for both second-order with sub-iteration
methods are the same, while the coarse grid solutions
vary widely. For the second-order time accurate cases,
it was observed that approximately five time iterations
per physical time step produced the optimal conver-
gence per iteration. However, the physics of the spe-
cific problem will dictate this number for other cases.
In the present results, five iterations typically reduced
the residual by three orders of magnitude at that time
level, with no improvement for more iterations. Thus,
it is concluded that the final solutions are converged
in time and space. However, to definitively character-
ize the temporal and spacial convergence more study
of each flow condition and further grid refinement is
required.

As a benchmark against previous versions of
PAB3D, results for the first order time accurate in-
tegration scheme with no sub-iterations were included

a) Full Domain.

b) Close up.

Fig. 2 Circular Cylinder: Grid colored by block.

Fig. 3 Circular Cylinder, Re = 200: Mach con-
tours, second-order, duel time solution.
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Fig. 4 Circular Cylinder, Re = 200: Vorticity
magnitude contours [1/s], second-order, duel time
solution.

Fig. 5 Circular Cylinder, Re = 200: CL history,
1st-order time accurate, no sub-iteration.

Fig. 6 Circular Cylinder, Re = 200: CL his-
tory, second-order time accurate scheme, no sub-
iteration.

Fig. 7 Circular Cylinder, Re = 200: CL history,
second-order time accurate, with five duel time it-
erations.

Fig. 8 Circular Cylinder, Re = 200: CL history,
second-order time accurate, with physical time it-
erations.

for the Re = 200 case, Figure 5, which corresponded
to a reduced frequency of St = 0.175. Also included,
are the results for the second order scheme with no
sub-iterations at Re = 200, Figure 6, which gives a
reduced frequency of St = 0.159. The second order
scheme with no sub-iterations is seen to be more less
accurate than the first order scheme. This is a result
of the second order scheme being only second order ac-
curate within the sub-iterations. Thus, sub-iterations
are required for both second order schemes described
in the paper.

The physical time iteration scheme, showed the most
consistent amplitude and frequency for CL between
coarse and fine solutions for Re = 200. However, for
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Fig. 9 Flat Plate: Schlieren image of Von Kármán
vortex street behind a flat plate at zero incidence
(M = 0.61, Re = 6.5 × 105, D/l = 0.05, l = 60 mm).
From Schichting6 after Heinemann et al.7

higher Re the physical time scheme consistently over
predicted the shedding frequency, while the duel time
scheme stayed within experimental bounds.

Flat Plate at Zero Incidence

Since PAB3D is a compressible code, it is desir-
able to assess its time accuracy in a compressible flow.
In this case, the computed vortex shedding frequency
from behind a slender flat plate at zero incidence with
Mach number between 0.3 < M∞ < 0.8 is compared
with the experimental results from Heinemann et al.,7

see Figure 9. As in the cylinder case, the flow is also
laminar, and thus is solved as such. The assessment
of PAB3D’s various turbulence models for unsteady
flows is an ongoing topic and is beyond the scope of
the present study, which will serve as a basis for future
studies.

The 2D grid for the plate was generated by modify-
ing the existing cylinder grid by extending the bound-
ary to 40 diameters and adding the flat middle section.
To enable the case to run efficiently in parallel, the grid
is divided into 15 blocks totaling 68,000 cells, see Fig-
ure 10. The same grid was used for all runs, which
gave a maximum y+ range of approximately 1.5 to
2.0 at the trailing edge. The plate length including
end caps is l = 60 mm and the ratio of diameter to
length is D/l = 0.03. In both the cylinder and plate
cases only one cell was used in the 2D direction. In
practice, adding at least one more cell in the thickness
direction often enhances convergence.

The flow field for the plate is similar to the cylinder,
the exception being that the plate boundary layer is
seen to separate in two locations. Mach number, sim-
ulated Schlieren and vorticity magnitude contours for
an example condition of M = 0.61 clearly show the
fore and aft separation and vortex shedding pattern,
see Figures 11- 13. In view of the forward separation
and the expected weak variation of lift, only a par-
tial integration of pressure for drag was done along
the top half of the trailing edge of the plate. Since,
only the frequency of the vortex street is desired, the
actual drag or lift is not needed. A close up view of
the shedding structure at the trailing edge is shown
in Figure 14. Unlike the low Re cylinder case, a com-
plex arrangement of smaller vortices are observed at
the trailing edge which then merge into larger more
regular vortices making up the street. The additional

a) Full Domain.

b) Trailing Edge.

Fig. 10 Flat Plate: Grid colored by block.

vortices close to the surface are also seen to increase
the fluctuation of the partial drag force histories, see
Figures 15 and 16. The fluctuation is also seen to be
the greatest after t = 7 × 104 sec, which is when the
grid and time step were refined. This is likely due to
the increased fidelity of the modeling of the secondary
trailing edge separations.

By taking an average of at least 6 cycles, reduced
frequencies were tabulated and plotted with experi-
mental results of Heinemann et al.7 for a wide range
of subsonic Mach and laminar Reynolds number, see
Table 2 and Figure 17. Results are seen to be in fair
agreement and improve to within 4% as Mach number
increases. A possible cause is a lack of convergence.
This case was set up at the condition of M = 0.61
and the other conditions were run with the same ex-
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a) Mach number, M .

b) Simulated Schlieren, ln||∇ρ||.

c) Vorticity magnitude, ||ω|| [1/s]

Fig. 11 Flat Plate, M = 0.61: Full plate view.

act time step and number iterations. It is likely, that
with more sub-iterations and or a smaller time step
the accuracy will improve.

Concluding Remarks
PAB3D’s time accurate capabilities have been suc-

cessfully upgraded to second-order time accuracy us-
ing two proven approaches, physical time sub-iteration
and duel time sub-iteration. Comparisons with exper-
imental data indicate both methods can be very accu-
rate, but more study is needed to quantify the error

a) Mach number, M .

b) Simulated Schlieren, ln||∇ρ||.

c) Vorticity magnitude, ||ω|| [1/s]

Fig. 12 Flat Plate, M = 0.61: Leading edge view.

Table 2 Flat Plate: Strouhal number results for
D/l = 0.03

2nd 2nd
order order

M∞ Rel[105] duel physical Exp.7

0.30 4.0 0.255 0.247 0.197
0.43 5.3 0.246 0.243 0.196
0.55 6.2 0.226 0.219 0.193
0.61 6.5 0.211 0.207 0.189
0.69 7.3 0.192 0.191 0.184
0.80 7.5 0.190 0.184 0.178
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a) Mach number, M .

b) Simulated Schlieren, ln||∇ρ||.

c) Vorticity magnitude, ||ω|| [1/s]

Fig. 13 Flat Plate, M = 0.61: Trailing edge view.

Fig. 14 Flat Plate, M = 0.61: Close up view show-
ing of vorticity magnitude showing multiple levels
of vortex shedding.

Fig. 15 Flat Plate, M = 0.61: Upper trailing edge
pressure history, second-order time accurate, with
five duel time iterations.

Fig. 16 Flat Plate, M = 0.61: Upper trailing edge
pressure history, second-order time accurate, with
five physical time iterations.

observed in some of the solutions. It should be noted
that for an equal sized time step and number of itera-
tions per time level, the physical time iteration scheme
will always have less error than the duel time scheme.
The purpose of duel time stepping is to enable the use
of a larger time step than would normally be allowed
by stability. Thus, the real advantage of duel time
stepping is for convergence acceleration. As a baseline,
in this study the time step and number of iterations
were held constant for each scheme and flow condition.
Further investigation is required to determine the op-
timal PAB3D parameters and methodology to obtain
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Fig. 17 Flat Plate: Strouhal number results.

the most accurate and efficient solutions.
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